FTIR-Spektrometer

Raster Liste

Aufsteigende Sortierung einstellen

9 Artikel

Raster Liste

Aufsteigende Sortierung einstellen

9 Artikel

Ein Fourier-Transform-Infrarotspektrometer (FTIR-Spektrometer) bzw. Fourier-Transformations-Infrarotspektrometer ist ein Spektrometer, das speziell für die Infrarotspektroskopie angewendet wird. Das Spektrum wird bei einem FTIR-Spektrometer nicht durch schrittweises Ändern der Wellenlänge, sondern durch eine Fourier-Transformation eines gemessenen Interferogramms berechnet.

Aufbau eines FTIR-Spektrometers

Ein FTIR-Spektrum besteht grundsätzlich aus den folgenden Komponenten: eine Strahlungsquelle, ein Strahlengang, zwei parallele Spiegel (ein beweglicher und ein fester), ein Spiegelantrieb, der die Spiegelabstände variieren kann, ein HeNe-Laser, der als Referenzstrahlungsquelle zur Bestimmung des Ortes des beweglichen Interferometerspiegels dient, ein Detektor, der die Energie der ankommenden Photonen in elektrische Signale umwandelt, und ein Rechner zur Durchführung der Fourier-Transformation des gemessenen elektrischen Signals. Als Ergebnis erhält man die spektrale Zusammensetzung, also das IR-Spektrum.

Funktionsweise eines FTIR-Spektrometers

Die Anordnung der Spiegel erfolgt so, dass sie, beispielsweise ein Michelson-Interferometer, bilden. Der Strahl wird hierbei durch einen Strahlteiler in zwei Einzelstrahlen aufgespalten, wovon einer auf einen festen Spiegel gelenkt und reflektiert wird. Der andere wird dagegen auf einen beweglichen Spiegel gelenkt. Im Anschluss daran werden bei einem Michelson Interferometer die Strahlen wieder zusammengeführt. Dies erfolgt so, dass sie abhängig, von den im Strahl enthaltenen Frequenzen und vom Spiegelweg, interferieren. Das erhaltene Interferogramm weist an der Stelle, an der beide Spiegel den gleichen Abstand vom Strahlteiler haben, ein Maximum auf. Hier haben somit alle Frequenzen additiv interferiert. Das spektrale Auflösungsvermögen eines FITR-Spektrometers ist durch die endliche Wellenlänge des beweglichen Spiegels begrenzt. Das bedeutet, je größer die Scanlänge ist, desto höher ist die spektrale Auflösung. Sie hängt dabei nicht von der Anzahl N der aufgenommenen Messpunkte ab. Diese bestimmt nur die maximal messbare Frequenz die nach dem „Nyguist-Shannon-Abtasttheorem“ durch die halbe Samplerate gegeben ist.

Anwendung der FTIR-Spektrometrie

FTIR-Spektrometer werden häufig zur Identifizierung von Mikroorganismen eingesetzt. Durch einen Vergleich mit Organismen einer Datenbank, kann eine Zuornung nach einer Spezie erfolgen. FTIR-Spektrometer können ebenfalls in der Prozessanalytik oder in der In-situ-Spektroskopie eingesetzt werden.

Literatur
• http://www.ir-spektroskopie.de/spec/ftir-prinzip/index.html (Abgerufen: 30.03.11).

part-of-labexchange-group