Archives

Thermo Quest LCQ Deca

Numéro d'identification: 013185
Statut: Archived Product?The unit is no longer available.
Envoi:
Description:
Thermo Quest LCQ Deca Spectromètre de masse. Avec logiciel. Ac 1999.
siehe Storeview
Plus d’information
Objektnummer B00013185
Numéro d'identification 013185
Nom de l'objet Thermo Quest LCQ Deca
Statut Archiv

Statut, conditions de livraison et de paiement

Vérification des appareils

Les appareils d’occasion sont vérifiés par Labexchange Service GmbH avant la livraison. Vous recevez des appareils entièrement fonctionnels.

 

Délai d'expédition

Les délais de livraison indiqués sont les plus rapides pour l’article en cause. Les délais de fait peuvent varier au cas par cas. Les délais de livraison définitifs sont indiqués dans la confirmation de commande.

Nous offrons des livraisons collectives par principe. Le délai de livraison s’oriente à l’article avec le délai de livraison le plus long. Une livraison partielle est possible par prix additionnel.

 

Méthodes d'expédition

Courrier, agences d'expédition, autocueillette, livraison par flotte de Labexchange

 

Conditions de livraison

Prix plus frais d’expédition. Les frais d’expédition indiqués sont à prévoir. Dérogations éventuelles sont possibles.

Si les coûts de transport ne sont pas spécifiés, s'il vous plaît demander séparément les frais de transport. Les frais de transport et d'emballage indiqués se réfèrent à l'itinéraire de transport le moins cher et sont sujets à des augmentations de coûts imprévues. En raison d'événements imprévisibles, les tarifs de transport et les délais de livraison peuvent changer à tout moment et doivent être adaptés à la situation actuelle. Incoterm codage selon les Incoterms 2010: Pour personnes qui viennent chercher les dispositifs elles-mêmes: EXW, pour les expéditions par voie maritime: CFR, par avion: CPT, d'autres expéditions: DAP. Remarque: Nous n'établissons pas des preuves préférentielles/EUR1. Dans le cas d’un enlèvement par vos soins/EXW de pays à l’intérieur ou à l’extérieur de la Union européenne, nous devons conserver 16% de TVA d’acheteur comme dépôt de garantie, jusqu’à ce que nous ayons reçu l’attestation de reception/la prevue de livraison.

 

Modalités de paiement

Nous n’acceptons pas le paiement par lettre de credit, PayPal, etc. Dans tous les cas le montant est payable sans déduction. Jusqu’au paiement complèt l’équipement reste notre propriété. Un escompte n’est pas accordé.

Pays

Modalités de paiement possible

Remarque

DE, AT, CH

Paiement par facture, prépaiement, par carte de credit

Paiement par facture est possible pour clients professionnels.

NL, BE, LU

Paiement par facture, prépaiement, par carte de credit

Paiement par facture est possible pour clients professionnels.

Autre pays

Prépaiement, par carte de credit

 

 

Nos conditions de vente, de livraison et de paiement sont en vigueur. Vous pouvez télécharger les documents ici.

La vente intermédiaire nous est réservée.

 

Défintion des statuts

Tous articles sont d’occasion, sauf si explicitement défini comme « appareil neuf ».

Statut

Condition

Remarque

Immédiatement disponible

Occasion

L’article a été déjà entièrement vérifié et peut être envoyé directement à vous.

En stock

Occasion

L'article est en notre stock, mais doit être vérifié avant la livraison par nos techniciens Vous recevez des articles entièrement fonctionnels.

Publié

Occasion

L’article est toujours au l’offreur. Nous achetons, vérifions et en fin livrons l’article après votre commande. Le certificat de fonctionnement ainsi que le rapport de service sont inclus à la livraison.

Appareil neuf

Neuf

C’est un dispositif neuf. L’article n’est pas utilisé et neuf d’usine. En ce qui concerne des article neufs, la garantie du fabricant est valable.

Labprocure

Occasion

Responsable du contenu de l‘offre d’appareil est la société Labprocure GmbH, comme annonceur. Labprocure assume la responsabilité des offres annoncées ici ainsi que des photos et des textes d’offre inclus. Labprocure GmbH, Bruckstraße 58, 72393 Burladingen.

Firma:              Thermo Quest

Modell:            LCQ Deca

Kommentar:   Dokumente engl.

The following illustrations and descriptions are referring to the instrument model and are drawn from brochures. They are not representing the delivery volume. The exact delivery content you will find only in the offering text.

API Source

The atmospheric pressure ionization (API) source forms gas phase sample ions from sample molecules that are contained in solution. The API source also serves as the sample interface between the LC and the MS detector. You can operate the API source in either the electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) mode.

The API source consists of two assemblies:

•            API probe assembly (ESI or APCI)

•            API stack

API Probe Assembly

The API probe assembly is the portion of the API source that is external to the vacuum manifold. You can change the ionization mode of the MS detector and switch the probe assemblies without breaking the vacuum. Two API probe assemblies are available with the LCQDECA:

•            ESI probe assembly

•            APCI probe assembly

ESI Probe Assembly

The ESI probe assembly consists of the ESI flange and the ESI probe. See Figure 1-1. The ESI flange holds the ESI probe in position next to the entrance of the heated capillary, which is part of the API stack. The ESI flange also seals the atmospheric pressure region of the API source. In addition, when it is in the operating Position against the spray shield, the ESI flange compresses the high-voltage safety-interlock switch. The ESI flange mounts an rails that allow movement of the flange toward and away from the vacuum manifold for easy servicing. Two flange retainer bolts hold the flange in place against the spray shield of the API stack. A grounded fltting holder secures a stainless steel grounded fitting that connects the sample transfer line to the PEEK safety sleeve and fused-silica sample tube.

The ESI probe produces charged aerosol droplets that contain sample ions. The ESI probe accommodates liquid flows of 1 µL/min to 1 mL/min without splitting.

The ESI probe includes the ESI fused-silica sample tube and PEEK safety sleeve, needle, nozzle, and manifold. Sample and solvent enter the ESI probe through the fused-silica sample tube. The sample tube is a short section of 0.1 mm ID fused-silica capillary that extends from a Fingertight fitting and ferrule secured to the grounded fitting holder, through the sample inlet and into the ESI needle, to within 1 mm from the end of the ESI needle. The ESI needle, to which a large negative or positive voltage is applied (typically ±4.5 to ±5 kV), sprays the sample solution into a fine mist of charged droplets. The ESI nozzle directs the flow of sheath gas and auxiliary gas at the droplets. The ESI manifold houses the ESI nozzle and needle and includes the sheath gas, auxiliary gas, and sheath liquid plumbing. The sheath gas plumbing and auxiliary gas plumbing deliver dry nitrogen gas to the nozzle. The sheath liquid plumbing delivers sheath liquid to the nozzle.

The ESI probe has inlets for the introduction of sample solution, sheath gas, auxiliary gas, and sheath liquid into the API source. The sheath gas is an inner coaxial nitrogen gas that sprays (nebulizes) the sample solution into a fine mist as it exits the sample tube. Typical sheath gas flow rates for ESI are 20 to 40 psi for sample flow rates of 5 to 10 µL/min and 80 units for sample flow rates of 200 to 1000 µ/min. When you tune the LCQDECA, you may need to adjust the sheath gas flow rate until the ion signal is stable.

The auxiliary gas is an outer coaxial nitrogen gas that assists the sheath gas in the nebulization and evaporation of sample solutions. The auxiliary gas also helps lower the humidity in the ion source. Typical auxiliary gas flow rates for ESI are 10 to 20 units. Auxiliary gas is usually not needed for sample flow rates below 100 mL/min. Refer to Table 1-1 for specific guidelines for LC/ESI/MS operation.

The sheath liquid is a solvent used to stabilize and enhance the ESI process for some solution chemistries (for example, high aqueous content) that do not readily form an electrospray and to provide make-up solvent in CE and CEC applications. Sheath liquid is injected by the syringe pump and exits the nozzle coaxially to the sample tube.

Table 1-1. Guidelines for LC/ESI/MS Opteration

LC Flow Rates

Suggested

Column Size

Probe

Position

(1 to 4)

Heated Capillary

Temperature

Sheath Gas

Auxiliary Gas

Infusion or LC at flow

rates of <10 µL/min

Capillary

2

Typical setting:

150 to 275 °C

Required

Typical setting:

20 to 40 units

Not required

Typical setting:

0 units

LC at flow rates from

50 to 100 µL/min

1 mm ID

2

Typical setting:

350 °C

Required

Typical setting:

80+ units

Not required, but

might heip

depending on

conditions

LC at flow rates from

200 to 500 µL/min

2 to 3 mm ID

3

Typical setting:

350 °C

Required

Typical setting:

80+ units

Not required, but

usually helps to

reduce solvent

background ions

Typical setting:

20 units

LC at flow rates from

0.5 to 1 mL/min

4.6 mm ID

3-4

Typical setting:

350 °C

Required

Typical setting:

80 to 100 units

Required

Typical setting:

20 units

Note. In negative ion mode, waveform 2 might be required (depending on solvents and modifiers used).

In positive ion mode with flow rates of >400 µL/min, waveform 2 might be required.

APCI Probe Assembly

The APCI probe and flange assembly is a single molding including the corona discharge needle assembly. See Figure 1-2. The APCI flange holds the APCI probe and the corona discharge needle assembly in position next to the entrance of the heated capillary. As with the ESI flange, the APCI flange seals the atmospheric pressure region (also called the spray chamber) of the API source. The APCI flange mounts on rails that allow movement of the flange toward and away from the vacuum manifold for easy servicing. Two flange retainer bolts hold the flange in place against the spray shield of the API stack. When the APCI flange is in the operating position against the spray shield, it compresses the high-voltage safety-interlock switch.

The APCI probe ionizes the Sample by atmospheric pressure chemical ionization. The APCI probe accommodates liquid flows of 100 pL/min to 2 mL/min without splitting.

The APCI probe includes the APCI sample tube, nozzle, sheath gas and auxiliary gas plumbing, and vaporizer. Sample and solvent enter the APCI nozzle through the sample tube. The sample tube is a short section of 0.15 mm ID fused silica tubing that extends from the sample inlet to 1 mm past the end of the nozzle. The manifold houses the APCI nozzle and includes the sheath gas and auxiliary gas plumbing. The APCI nozzle sprays the sample solution into a fine mist. The sheath gas and auxiliary gas plumbing deliver dry nitrogen gas to the nozzle. Typical sheath gas flow rates for APCI are 60 units for sample flow rates of 100 µL/min, 80 units for sample flow rates of 1 mL/min, and 85 units for sample flow rates of 2 mL/min. Typical auxiliary gas flow rates for APCI are 10 to 20 units. The droplets in the mist then enter the vaporizer. The vaporizer flash vaporizes the droplets at temperatures up to 600 °C. Typical vaporizer temperatures are 450 to 550 °C for most flow rates. Refer to Table 1-2 for specific guidelines for LC/APCl/MS Operation.

Table 1-2. Guidelines for LC/APCI/MS Operation

LC Flow Rate

Heated Capillary

Temperature

Vaporizer

Temperature

Sheath Gas

Auxiliary Gas

LC at flow rates from

0.2 to 2 mL/min

Typical setting:

150 to 225 °C

Typical setting:

400 to 550 °C

Required

Typical setting:

50 to 100 units

Not required, but usually helps to reduce solvent background ions

Typical setting:

0 to 20 units

The sample vapor is swept toward the corona discharge needle by the flow of the sheath and auxiliary gasses. The corona discharge needle assembly is mounted an the APCI flange. The assembly positions the tip of the corona discharge needle near the vaporizer. A high potential (typically ±3 to ±5 kV) is applied to the corona discharge needle to produce a corona discharge current of up to 10 µA. (A typical value of the corona discharge current is 5 µA.) The corona discharge from the needle produces a reagent ion plasma primarily from the solvent vapor. The sample vapor is ionized by ion-molecule reactions with the reagent ions in the plasma. APCI requires a constant source of electrons for the ionization process. Thus, the corona discharge current is set and regulated. The potential applied to the corona discharge needle varies, as needed, to provide the required current.

Groupe de produits: LC / MS

Impossible de trouver des produits correspondants à votre sélection.
Back to Top
part-of-labexchange-group
Recherche propulsée par ElasticSuite
Labprocure